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An iterated integral representation for a multivariate normal 
integral having block covariance structure 
By ROBERT E. BECHHOFER AND AJIT C. TAiIMHANE 

Department of Operations Research, Cornell University, Ithaca, NVew York 

SUMMARY 

It is shown that a km-variate normal probability integral over a rectangular region can be 
expressed as an iterated k-variate normal integral when the k sets of m variates each have a 
certain commonly realized block covariance structure. The latter representation is much 
easier to evaluate numerically than is the former. This result generalizes previous results 
for k = 1 of Dunnett & Sobel and Steck & Owen. 

Sonme key words: Block covariance structure; Multivariate normal integral; Multivariate normal proba- 
bilities; Numerical integration; Ranking and selection procedures. 

1. INTRODUCTION 

The problem of evaluating multivariate norm-nal probabilities over rectangular regions 
has received considerable attention; see Dutt (1973) for recent relevant references. Such 
probabilities arise, e.g. in connexion with studies of the performance characteristics of 
ranking and selection procedures involving means of normal distributions. In most cases 
the evaluation of these probabilities is time consuming and costly, even on modern com- 
puters, and thus the implementation of ranking and selection procedures, e.g. the computa- 
tion of tables to facilitate their use, has been generally inhibited. However, it is known that 
the equicorrelated case, which is a very important one in applications, yields iterated 
integrals which are particularly tractable. The purpose of the present paper is to show 
that similar simplifications arise if the variates have a certain block covariance structure. 

Let X' = (Xll,..., Xlm, X21, ..., X2mn .-.-, Xkl, -.-, Xkmn) denote a vector consisting of k 
sets of m variates each. We assume that X' has a km-variate standard normal distribution 
with 

corr (Xijl, X 2) = pi (1 < i < k; jl $ j2, 1 < j1,j2 < m) 

corr (Xil, Xi2j) =yi2 (il t i2, 1 < il, i2 < k; 1 < j im), 

corr (X,1 Xj,1) = (i1 * i2; 1 e i1, i2 i k; il t j2, 1 < j1,j2 < m); 

see (6). For given constants aij and bij (-oo < aij < bij < o1; I < i < k,g1 < j < m) we are 
interested in the probability H{(alj, ..., akj), (blj, ..., bkl); 1 j i< m}, where 

H = pr {aij < Xii < bi (1 < < k,1 < j < m)}. (1) 

Now H can be found by determining the volume under a particular km-variate normal 
surface. In this paper we develop an equivalent iterated integral representation of (1); 
this latter representation is much easier to evaluate numerically than is the km-variate 
normal one. Our result is valid for 0 < pi < 1 (1 ( i < k) and under certain restrictions on 
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the g i2 and i, i2, implied by the positive-definiteness of the matrices Ao, Al, and Q defined 
by (3), and (6). 

For k = 1, Cacoullos & Sobel (1966, p. 454) gave the general result 

pr {aj <X j < bj (1 F [ i+PY}-F{+P2} f(y) dy, (2) 

which they state can be shown to hold, using the proof of Steck & Owen (1962), for corr 
(Xl, Xj2) = p > - 1/(m - 1) (jl $ j2; 1 < j1 j2 < m); here F(. ) is the standard normal dis- 
tribution function and f(.) is the corresponding density function. Earlier work on this 
problem was done by Dunnett & Sobel (1955) who developed (2) for the special case aj = -00 
(1 < j < m), p > 0; Steck & Owen (1962) extended that result to the case aj = -00 
(1 < j < m), p > - 1/(m - 1) and also gave three other equivalent representations of this 
probability when b1 = b (I < j < m). 

In ? 3 of this paper we show that when ?Iij = 6ij (i $ j; 1 < i, j < k), a method proposed 
earlier by Das (1956) for reducing the size of a multivariate normal integral yields the same 
result as is obtained by our method. 

Some situations in which the correlation matrix has the special block structure which we 
are considering are mentioned in ? 5. 

2. DERIVATION OF THE ITERATED INTEGRAL REPRESENTATION 

Let Yj = (Ylb, ..., Ykj) (0 < j < m) be a k-vector having a standard multivariate normal 
distribution Fj with associated correlation matrix A1 = ((Aj 2)). We assume that the Y' 
(O < j < m) are independent, and that the Yj (1 < j < m) are identically distributed. The 
nondiagonal elements of A0 and Al are given for il + i2; 1 < 1 i1,2 < k by 

?l9) =E(Y,Y1 ) = - ), (3a) 

A(ps =E(Y.1l Yi21) = {(1 ) (1I- )}1 (3 b) 

We further assume that A0 and Al are positive-definite, and thus for il + i2 and 1 < il, 
'2 < k we must have 

(Eili2)2 <PilPi2 (y71'2- < (1-p)2(<P pl) Pi2). (4) 
In addition we assume for 1 i < k that 0 < Pi < 1. In the following development our 
proof is for the case 0 < pi < 1 (1 < i < k), but the same final result would be obtained 
if, when one or more Pi = 0 in (5), we then define the corresponding A(92 as being equal to 
zero in (3 a). 

For k = 2 the two conditions (4) are both necessary and sufficient that A0 and A1, respect- 
ively, are positive-definite. Also, if il 2 = 6, 91si2 = y, and pi, = p for (il * i2; 1 < i1X i2 < k), 
then A0 and Al are positive-definite if 

- 1/(k - ) < E/p < I, - 11(k - ) < (,I- )(tp) < 
respectively. 

We now consider the km-vector X' = (X1, ..., Xk) = (Xll, ...I Xlm' ,Xkl,...,Xkm) 
which is formed from the Y1 (O < j < m) by the transformation 
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It is straightforward to show that X' has a standard multivariate normal distribution F 
with associated correlation matrix Q = ((Qij)), the elements of which are given by the m x m 
matrices 

Qii = E(X'Xi) = (((o(ii))), O4i) - =p q* (6a) i pq pq ~~pi (p t q), 
(a 

'i02 = E(X41X 2) = (((,i2))), Oi2) - (p _ q) (6b) 

Here 1 < i < k, 1 < p, q < m and i1 * i2, 1 < i1, 2, <, k, 1 p, q < m. We also assume that 
Q is positive-definite, which places additional restrictions on the g i2and y.1 i2*1 For example, 
for k = 2, m > 2 it can be shown that in order that Q2mx 2m' spositive-definite we must have 

Dmi 2 = { 1P) (1 P2)-(Y12- 62)21m-1 
x It' + (m - 1 l)p11 + (m -1) P2 - {M612 + (Y112 -612 )12] > ?> (7) 

where DAn, 2 = Q2m x 2m 
For given constants aij, bij (-o <, aij <, bj < o) (1 < i < k, 1 < j < m) we first evaluate 

the probability 

G{(blj, ..,bkj) (1 < j < m)} = pr{Xii < bij (I < i < k, 1 < j < m)}. (8) 

We have, using (5), that 

G = pr{X' < (bil, ..., bim) (1 < i < k)} (9) 

= pr [Yj < {(1-p1)T 2(blj-pl Y0) , -(1Pk) k(bkj- PkYko)} (1 <j i< m)] 

fcotcxJ rn F (b , - Pi Yio bi - PkYoy (1O) 

where Fj (j= 0, 1) is the k-variate standard normal distribution with correlation matrix 
Aj, andfo is the k-variate standard normal density function corresponding to Fi. 

Thus the desired probability (1) is given by 

H = G{(blj, b2j, ..., bkj) (1 < j < m)}-G{(a,j, b23,.**, bkj) (1 < ? < M)} 
- Gj(bjj, a2j, - , bkj) ( 1 < j < m)} - . . .- G(bjj, b2j, . .., aki) ( 1 < j r)} 
+ ...+ (- J , a2j, ..., akj) (1 < j )}. (11) 

When k = 1, (11) clearly reduces to (2). 

3. FURTHER SIMPLIFICATION OF THE ITERATED INTEGRAL REPRESENTATION 

Since A0 is assumed to be positive-definite we can find a nonsingular k x k matrix R such 
that RR' = A0. Letting Z = R-1 YO we note that the elements of the k-vector Z' = (Z1, . . ., Zk) 
are normally and independently distributed with zero means and unit variances. Thus the 
right-hand side of (10) reduces to 

F 4 mrlaZa kj -Pk ka a exp (- 2) dzl... dzk (12) 
(2i.) kf0 P0 pi'P) 

sums with respect to a being over 1, ..., k. 
2I-2 
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If Vi1i2 = gili2 (i1 * i2, 1 < i1, i2 < k), then A1 defined in (3b) becomes the identity matrix, 
and (11) can be written very simply, using (12), as 

H = (21I)kf **4:i I [ (bi F - )P 

- Fai Pi riaZa exp Ez2) dzl, dzk (13) 
11 P I 2i~ a ''Ic(3 

In the next section we shall derive (13) using a method due to Das (1956). 

4. APPLICATION OF THE METHOD OF DAS IN OUR SPECIAL CASE 

Das's (1956) method as extended by Webster (1970) is as follows: Suppose that 

X, = (Xi, . .nX) 

is an n-vector having a standard multivariate normal distribution with correlation matrix Q, 
and suppose that Q can be expressed as Q = C2 + DD', where C is a n x n diagonal matrix 
with positive diagonal elements ci (1 < i < n), and D is a n x k real matrix. Then 

pr{ai < X < bi(l < i < n)} = (27) f...f Fl ( ( Za) 

- F a( 
- 

Eda Za)exp (- -z 2) dzi ... dZk. (14) 

In general, the difficulty in applying the method lies in finding the appropriate value of k, 
and the matrices C and D. However, in our special case this task is greatly simplified. 

We define Y' = (Y11,...,Y, Y.., Y,..., Ykm) and Y'= (Ylo,. ko), and let C be a 
km x km matrix and Q a km x k matrix given for 0 < Pr < 1 (1 < r < k) by 

-(1-Pr)l (i =j=rm-m+s; 1< r < k,1 <s <), 

- 0 otherwise; 

i- (i=jm-m+s; 1<j<k,1< s<m), 

- lo otherwise. 

Then (5) can be written as X = CY+ QYo. Since Y and Y0 are independent we can write 
Q2x = CQy C' + Q Q0Q', where Qy is the km x km correlation matrix of Y and no is that for 
Y0. For our special case we have Qy = I, and hence Qx = C2+ Q2QoQ'. Letting QR = D, 
where R is a k x k nonsingular matrix such that RR' = o0, we see that the special form of 
Q applies. Therefore we can write (14) as (1 3). 

5. APPLICATIONS 

We now mention some examples involving multivariate normal integrals which have 
the special correlation structure studied in the present paper. This research was motivated 
by a similar integral which arose in a paper of Dunnett (1960, equation 2). Fairweather 
(1966) also encountered such an integral; one of the two (2k - t)-variate probabilities associ- 
ated with (3.9) of his paper has this structure if k is even and t = 1k. Both these authors were 
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severely limited in the study of their problems due to the difficulties associated with 
numerical evaluation of the integrals. It is hoped that the results derived in the present 
paper will help ease this difficulty, e.g. Dunnett's (2k - 2)-variate integrals can now be 
evaluated simply by using bivariate normal probabilities. We also remark that block 
covariance matrices occur commonly in multivariate data analysis, for instance in pooling 
of cross-sectional and time series data in econometric studies. 

The work was supported by the U.S. Army Research Office and the Office of Naval 
Research. 
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