An Iterated Integral Representation for a Multivariate Normal Integral Having Block Covariance Structure
Author(s): Robert E. Bechhofer and Ajit C. Tamhane
Source: Biometrika, Vol. 61, No. 3 (Dec., 1974), pp. 615-619
Published by: Biometrika Trust
Stable URL: http://www.jstor.org/stable/2334747
Accessed: 21/10/2010 17:37

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=bio.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support @ jstor.org.

Biometrika Trust is collaborating with JSTOR to digitize, preserve and extend access to Biometrika.

An iterated integral representation for a multivariate normal integral having block covariance structure

By ROBERT E. BECHHOFER and AJIT C. TAMHANE
Department of Operations Research, Cornell University, Ithaca, New York

Summary

It is shown that a km -variate normal probability integral over a rectangular region can be expressed as an iterated k-variate normal integral when the k sets of m variates each have a certain commonly realized block covariance structure. The latter representation is much easier to evaluate numerically than is the former. This result generalizes previous results for $k=1$ of Dunnett \& Sobel and Steck \& Owen.

Some key words : Block covariance structure; Multivariate normal integral ; Multivariate normal probabilities; Numerical integration; Ranking and selection procedures.

1. Introduction

The problem of evaluating multivariate normal probabilities over rectangular regions has received considerable attention; see Dutt (1973) for recent relevant references. Such probabilities arise, e.g. in connexion with studies of the performance characteristics of ranking and selection procedures involving means of normal distributions. In most cases the evaluation of these probabilities is time consuming and costly, even on modern computers, and thus the implementation of ranking and selection procedures, e.g. the computation of tables to facilitate their use, has been generally inhibited. However, it is known that the equicorrelated case, which is a very important one in applications, yields iterated integrals which are particularly tractable. The purpose of the present paper is to show that similar simplifications arise if the variates have a certain block covariance structure.

Let $X^{\prime}=\left(X_{11}, \ldots, X_{1 m}, X_{21}, \ldots, X_{2 m}, \ldots, X_{k 1}, \ldots, X_{k m}\right)$ denote a vector consisting of k sets of m variates each. We assume that X^{\prime} has a $k m$-variate standard normal distribution with

$$
\begin{aligned}
\operatorname{corr}\left(X_{i j_{1}}, X_{i j_{2}}\right) & =\rho_{i} \quad\left(1 \leqslant i \leqslant k ; j_{1} \neq j_{2}, 1 \leqslant j_{1}, j_{2} \leqslant m\right) \\
\operatorname{corr}\left(X_{i_{1} j}, X_{i_{2} j}\right) & =\eta_{i_{1} i_{2}} \quad\left(i_{1} \neq i_{2}, 1 \leqslant i_{1}, i_{2} \leqslant k ; 1 \leqslant j \leqslant m\right) \\
\operatorname{corr}\left(X_{i_{1} j_{1}}, X_{i_{2} j_{2}}\right) & =\xi_{i_{1} i_{2}} \quad\left(i_{1} \neq i_{2} ; 1 \leqslant i_{1}, i_{2} \leqslant k ; j_{1} \neq j_{2}, 1 \leqslant j_{1}, j_{2} \leqslant m\right)
\end{aligned}
$$

see (6). For given constants $a_{i j}$ and $b_{i j}\left(-\infty \leqslant a_{i j} \leqslant b_{i j} \leqslant \infty ; 1 \leqslant i \leqslant k, 1 \leqslant j \leqslant m\right)$ we are interested in the probability $H\left\{\left(a_{1 j}, \ldots, a_{k j}\right),\left(b_{1 j}, \ldots, b_{k j}\right) ; 1 \leqslant j \leqslant m\right\}$, where

$$
\begin{equation*}
H=\operatorname{pr}\left\{a_{i j}<X_{i j}<b_{i j}(1 \leqslant i \leqslant k, 1 \leqslant j \leqslant m)\right\} . \tag{1}
\end{equation*}
$$

Now H can be found by determining the volume under a particular $k m$-variate normal surface. In this paper we develop an equivalent iterated integral representation of (1); this latter representation is much easier to evaluate numerically than is the km -variate normal one. Our result is valid for $0 \leqslant \rho_{i}<1 \quad(1 \leqslant i \leqslant k)$ and under certain restrictions on
the $\xi_{i_{1} i_{2}}$ and $\eta_{i_{1} i_{2}}$, implied by the positive-definiteness of the matrices Λ_{0}, Λ_{1}, and Ω defined by (3), and (6).

For $k=1$, Cacoullos \& Sobel (1966, p. 454) gave the general result

$$
\begin{equation*}
\operatorname{pr}\left\{a_{j}<X_{j}<b_{j}(1 \leqslant j \leqslant m)\right\}=\int_{-\infty}^{\infty} \prod_{j=1}^{m}\left[F\left\{\frac{b_{j}+\rho^{\frac{1}{2}} y}{(1-\rho)^{\frac{1}{2}}}\right\}-F\left\{\frac{a_{j}+\rho^{\frac{1}{2}} y}{(1-\rho)^{\frac{1}{2}}}\right)\right] f(y) d y \tag{2}
\end{equation*}
$$

which they state can be shown to hold, using the proof of Steck \& Owen (1962), for corr $\left(X_{j_{1}}, X_{j_{2}}\right)=\rho>-1 /(m-1)\left(j_{1} \neq j_{2} ; 1 \leqslant j_{1}, j_{2} \leqslant m\right)$; here $F($.$) is the standard normal dis-$ tribution function and $f($.$) is the corresponding density function. Earlier work on this$ problem was done by Dunnett \& Sobel (1955) who developed (2) for the special case $a_{j}=-\infty$ $(1 \leqslant j \leqslant m), \rho \geqslant 0$; Steck \& Owen (1962) extended that result to the case $a_{j}=-\infty$ $(1 \leqslant j \leqslant m), \rho>-1 /(m-1)$ and also gave three other equivalent representations of this probability when $b_{j}=b(1 \leqslant j \leqslant m)$.

In §3 of this paper we show that when $\eta_{i j}=\xi_{i j}(i \neq j ; 1 \leqslant i, j \leqslant k)$, a method proposed earlier by Das (1956) for reducing the size of a multivariate normal integral yields the same result as is obtained by our method.

Some situations in which the correlation matrix has the special block structure which we are considering are mentioned in $\S 5$.

2. Derivation of the iterated integral representation

Let $Y_{j}^{\prime}=\left(Y_{1 j}, \ldots, Y_{k j}\right)(0 \leqslant j \leqslant m)$ be a k-vector having a standard multivariate normal distribution F_{j} with associated correlation matrix $\Lambda_{j}=\left(\left(\lambda_{i_{1} i_{2}}^{(j)}\right)\right.$. We assume that the Y_{j}^{\prime} $(0 \leqslant j \leqslant m)$ are independent, and that the $Y_{j}^{\prime}(1 \leqslant j \leqslant m)$ are identically distributed. The nondiagonal elements of Λ_{0} and Λ_{1} are given for $i_{1} \neq i_{2} ; 1 \leqslant i_{1}, i_{2} \leqslant k$ by

$$
\begin{align*}
& \lambda_{i_{1} i_{2}}^{(0)}=E\left(Y_{i_{1} 0} Y_{i_{2} 0}\right)=\frac{\xi_{i_{1} i_{2}}}{\left(\rho_{i_{1}} \rho_{i_{2}}\right)^{\frac{1}{2}}}, \tag{3a}\\
& \lambda_{i_{1} i_{2}}^{(1)}=E\left(Y_{i_{1} 1} Y_{i_{2} 1}\right)=\frac{\eta_{i_{1} i_{2}}-\xi_{i_{1} i_{2}}}{\left\{\left(1-\rho_{i_{1}}\right)\left(1-\rho_{i_{2}}\right)\right\}^{\frac{1}{2}}} . \tag{3b}
\end{align*}
$$

We further assume that Λ_{0} and Λ_{1} are positive-definite, and thus for $i_{1} \neq i_{2}$ and $1 \leqslant i_{1}$, $i_{2} \leqslant k$ we must have

$$
\begin{equation*}
\left(\xi_{i_{1} i_{2}}\right)^{2}<\rho_{i_{1}} \rho_{i_{2}}, \quad\left(\eta_{i_{1} i_{2}}-\xi_{i_{1} i_{2}}\right)^{2}<\left(1-\rho_{i_{1}}\right)\left(1-\rho_{i_{2}}\right) \tag{4}
\end{equation*}
$$

In addition we assume for $1 \leqslant i \leqslant k$ that $0 \leqslant \rho_{i}<1$. In the following development our proof is for the case $0<\rho_{i}<1(1 \leqslant i \leqslant k)$, but the same final result would be obtained if, when one or more $\rho_{i}=0$ in (5), we then define the corresponding $\lambda_{i_{1} i_{2}}^{(0)}$ as being equal to zero in (3a).

For $k=2$ the two conditions (4) are both necessary and sufficient that Λ_{0} and Λ_{1}, respectively, are positive-definite. Also, if $\xi_{i_{1} i_{2}}=\xi, \eta_{i_{1} i_{2}}=\eta$, and $\rho_{i_{1}}=\rho$ for $\left(i_{1} \neq i_{2} ; 1 \leqslant i_{1}, i_{2} \leqslant k\right)$, then Λ_{0} and Λ_{1} are positive-definite if

$$
-1 /(k-1)<\xi / \rho<1, \quad-1 /(k-1)<(\eta-\xi) /(1-\rho)<1,
$$

respectively.
We now consider the km-vector $X^{\prime}=\left(X_{1}, \ldots, X_{k}\right)=\left(X_{11}, \ldots, X_{1 m}, \ldots, X_{k 1}, \ldots, X_{k m}\right)$ which is formed from the $Y_{j}^{\prime}(0 \leqslant j \leqslant m)$ by the transformation

$$
\begin{align*}
X_{i} & =\left(X_{i 1}, \ldots, X_{i m}\right) \\
& =\left(Y_{i 1}, \ldots, Y_{i m}\right)\left(1-\rho_{i}\right)^{\frac{1}{2}}+\left(Y_{i 0}, \ldots, Y_{i 0}\right) \rho_{i}^{\frac{1}{i}} \quad(1 \leqslant i \leqslant k) . \tag{5}
\end{align*}
$$

It is straightforward to show that X^{\prime} has a standard multivariate normal distribution F with associated correlation matrix $\Omega=\left(\left(\Omega_{i j}\right)\right)$, the elements of which are given by the $m \times m$ matrices

$$
\begin{array}{r}
\Omega_{i i}=E\left(X_{i}^{\prime} X_{i}\right)=\left(\left(\omega_{p q}^{(i i)}\right)\right), \quad \omega_{p q}^{(i i)}= \begin{cases}1 & (p=q), \\
\rho_{i} & (p \neq q),\end{cases} \\
\Omega_{i_{1} i_{2}}=E\left(X_{i_{1}}^{\prime} X_{i_{2}}\right)=\left(\left(\omega_{p q}^{\left(i_{1} i_{2}\right)}\right)\right), \quad \omega_{p q}^{\left(i_{1} i_{2}\right)}= \begin{cases}\eta_{i_{1} i_{2}} & (p=q), \\
\xi_{i_{1} i_{2}} & (p \neq q) .\end{cases} \tag{6b}
\end{array}
$$

Here $1 \leqslant i \leqslant k, 1 \leqslant p, q \leqslant m$ and $i_{1} \neq i_{2}, 1 \leqslant i_{1}, i_{2}, \leqslant k, 1 \leqslant p, q \leqslant m$. We also assume that Ω is positive-definite, which places additional restrictions on the $\xi_{i_{1} i_{2}}$ and $\eta_{i_{1} i_{2}}:$ For example, for $k=2, m \geqslant 2$ it can be shown that in order that $\Omega_{2 m \times 2 m}$ is positive-definite we must have

$$
\begin{align*}
D_{m, 2}=\left\{\left(1-\rho_{1}\right)\left(1-\rho_{2}\right)\right. & \left.-\left(\eta_{12}-\xi_{12}\right)^{2}\right\}^{m-1} \\
& \times\left[\left\{1+(m-1) \rho_{1}\right\}\left\{1+(m-1) \rho_{2}\right\}-\left\{m \xi_{12}+\left(\eta_{12}-\xi_{12}\right)\right\}^{2}\right]>0, \tag{7}
\end{align*}
$$

where $D_{m, 2}=\left|\Omega_{2 m \times 2 m}\right|$.
For given constants $a_{i j}, b_{i j}\left(-\infty \leqslant a_{i j} \leqslant b_{i j} \leqslant \infty\right)(1 \leqslant i \leqslant k, 1 \leqslant j \leqslant m)$ we first evaluate the probability

$$
\begin{equation*}
G\left\{\left(b_{1 j}, \ldots, b_{k j}\right)(1 \leqslant j \leqslant m)\right\}=\operatorname{pr}\left\{X_{i j}<b_{i j}(1 \leqslant i \leqslant k, 1 \leqslant j \leqslant m)\right\} . \tag{8}
\end{equation*}
$$

We have, using (5), that

$$
\begin{align*}
G & =\operatorname{pr}\left\{X_{i}^{\prime}<\left(b_{i 1}, \ldots, b_{i m}\right) \quad(1 \leqslant i \leqslant k)\right\} \tag{9}\\
& =\operatorname{pr}\left[Y_{j}^{\prime}<\left\{\left(1-\rho_{1}\right)^{-\frac{1}{2}}\left(b_{1 j}-\rho_{1}^{\frac{1}{2}} Y_{10}\right), \ldots,\left(1-\rho_{k}\right)^{-\frac{1}{2}}\left(b_{k j}-\rho_{k}^{\frac{1}{2}} Y_{k 0}\right)\right\}(1 \leqslant j \leqslant m)\right] \\
& =\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} \prod_{j=1}^{m} F_{1}\left\{\frac{b_{1 j}-\rho_{1}^{\frac{1}{2}} y_{10}}{\left(1-\rho_{1}\right)^{\frac{1}{2}}}, \ldots, \frac{b_{k j}-\rho_{k}^{\frac{1}{2}} y_{k 0}}{\left(1-\rho_{k}\right)^{\frac{1}{2}}}\right\} f_{0}\left(y_{10}, \ldots, y_{k 0}\right) d y_{10} \ldots d y_{k 0} \tag{10}
\end{align*}
$$

where $F_{j}(j=0,1)$ is the k-variate standard normal distribution with correlation matrix Λ_{j}, and f_{0} is the k-variate standard normal density function corresponding to F_{0}.

Thus the desired probability (1) is given by

$$
\begin{align*}
H=G\left\{\left(b_{1 j},\right.\right. & \left.\left.b_{2 j}, \ldots, b_{k j}\right)(1 \leqslant j \leqslant m)\right\}-G\left\{\left(a_{1 j}, b_{2 j}, \ldots, b_{k j}\right)(1 \leqslant j \leqslant m)\right\} \\
& \quad-G\left\{\left(b_{1 j}, a_{2 j}, \ldots, b_{k j}\right)(1 \leqslant j \leqslant m)\right\}-\ldots-G\left\{\left(b_{1 j}, b_{2 j}, \ldots, a_{k j}\right)(1 \leqslant j \leqslant m)\right\} \\
& +\ldots+(-1)^{k} G\left\{\left(a_{1 j}, a_{2 j}, \ldots, a_{k j}\right)(1 \leqslant j \leqslant m)\right\} . \tag{11}
\end{align*}
$$

When $k=1$, (11) clearly reduces to (2).

3. Further simplification of the iterated integral representation

Since Λ_{0} is assumed to be positive-definite we can find a nonsingular $k \times k$ matrix R such that $R R^{\prime}=\Lambda_{0}$. Letting $Z=R^{-1} Y_{0}$ we note that the elements of the k-vector $Z^{\prime}=\left(Z_{1}, \ldots, Z_{k}\right)$ are normally and independently distributed with zero means and unit variances. Thus the right-hand side of (10) reduces to

$$
\begin{equation*}
\frac{1}{(2 \pi)^{\frac{1}{2} k}} \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} \prod_{j=1}^{m} F_{1}\left\{\frac{b_{1 j}-\rho_{1}^{\frac{1}{2}} \Sigma r_{1 a} z_{a}}{\left(1-\rho_{1}\right)^{\frac{1}{2}}}, \ldots, \frac{b_{k j}-\rho_{k}^{\frac{1}{2}} \Sigma r_{k a} \dot{z}_{a}}{\left(1-\rho_{k}\right)^{\frac{1}{2}}}\right\} \exp \left(-\frac{1}{2} \Sigma z_{a}^{2}\right) d z_{1} \ldots d z_{k} \tag{12}
\end{equation*}
$$

sums with respect to a being over $1, \ldots, k$.

If $\eta_{i_{1} i_{2}}=\xi_{i_{1} i_{2}}\left(i_{1} \neq i_{2}, 1 \leqslant i_{1}, i_{2} \leqslant k\right)$, then Λ_{1} defined in ($3 b$) becomes the identity matrix, and (11) can be written very simply, using (12), as

$$
\begin{align*}
H=\frac{1}{(2 \pi)^{\frac{1}{2} k}} \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} \prod_{i=1}^{k} \prod_{j=1}^{m} & {\left[F\left\{\frac{b_{i j}-\rho_{i}^{\frac{1}{2}} \Sigma r_{i a} z_{a}}{\left(1-\rho_{i} \frac{1}{2}\right.}\right\}\right.} \\
& \left.-F\left\{\frac{a_{i j}-\rho_{i}^{\frac{1}{2}} \Sigma r_{i a} z_{a}}{\left(1-\rho_{i}\right)^{\frac{1}{2}}}\right\}\right] \exp \left(-\frac{1}{2} \Sigma z_{a}^{2}\right) d z_{1}, \ldots, d z_{k} \tag{13}
\end{align*}
$$

In the next section we shall derive (13) using a method due to Das (1956).

4. Application of the method of Das in our special case

Das's (1956) method as extended by Webster (1970) is as follows: Suppose that

$$
X^{\prime}=\left(X_{1}, \ldots, X_{n}\right)
$$

is an n-vector having a standard multivariate normal distribution with correlation matrix Ω, and suppose that Ω can be expressed as $\Omega=C^{2}+D D^{\prime}$, where C is a $n \times n$ diagonal matrix with positive diagonal elements $c_{i}(1 \leqslant i \leqslant n)$, and D is a $n \times k$ real matrix. Then

$$
\begin{align*}
& \operatorname{pr}\left\{a_{i}<X_{i}<b_{i}(1 \leqslant i \leqslant n)\right\}= \frac{1}{(2 \pi)^{\frac{1}{2} k}} \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} \prod_{i=1}^{n}\left\{F\left(\frac{b_{i}-\Sigma d_{i a} z_{a}}{c_{i}}\right)\right. \\
&\left.-F\left(\frac{a_{i}-\Sigma d_{i a} z_{a}}{c_{i}}\right)\right\} \exp \left(-\frac{1}{2} \Sigma z_{a}^{2}\right) d z_{1} \ldots d z_{k} . \tag{14}
\end{align*}
$$

In general, the difficulty in applying the method lies in finding the appropriate value of k, and the matrices C and D. However, in our special case this task is greatly simplified.
We define $Y^{\prime}=\left(Y_{11}, \ldots, Y_{1 m}, \ldots, Y_{k 1}, \ldots, Y_{k m}\right)$ and $Y_{0}^{\prime}=\left(Y_{10}, \ldots, Y_{k 0}\right)$, and let C be a $k m \times k m$ matrix and Q a $k m \times k$ matrix given for $0<\rho_{r}<1(1 \leqslant r \leqslant k)$ by

$$
\begin{gathered}
c_{i j}=\left\{\begin{array}{cl}
\left(1-\rho_{r}\right)^{\frac{1}{2}} & (i=j=r m-m+s ; \quad 1 \leqslant r \leqslant k, 1 \leqslant s \leqslant m), \\
0 & \text { otherwise } ;
\end{array}\right. \\
\quad q_{i j}= \begin{cases}\rho_{j}^{\frac{1}{2}} & (i=j m-m+s ; \quad 1 \leqslant j \leqslant k, 1 \leqslant s \leqslant m), \\
0 & \text { otherwise } .\end{cases}
\end{gathered}
$$

Then (5) can be written as $X=C Y+Q Y_{0}$. Since Y and Y_{0} are independent we can write $\Omega_{X}=C \Omega_{Y} C^{\prime}+Q \Omega_{0} Q^{\prime}$, where Ω_{Y} is the $k m \times k m$ correlation matrix of Y and Ω_{0} is that for Y_{0}. For our special case we have $\Omega_{Y}=I$, and hence $\Omega_{X}=C^{2}+Q \Omega_{0} Q^{\prime}$. Letting $Q R=D$, where R is a $k \times k$ nonsingular matrix such that $R R^{\prime}=\Omega_{0}$, we see that the special form of Ω applies. Therefore we can write (14) as (13).

5. Applications

We now mention some examples involving multivariate normal integrals which have the special correlation structure studied in the present paper. This research was motivated by a similar integral which arose in a paper of Dunnett (1960, equation 2). Fairweather (1966) also encountered such an integral; one of the two ($2 k-t)$-variate probabilities associated with (3.9) of his paper has this structure if k is even and $t=\frac{1}{2} k$. Both these authors were
severely limited in the study of their problems due to the difficulties associated with numerical evaluation of the integrals. It is hoped that the results derived in the present paper will help ease this difficulty, e.g. Dunnett's ($2 k-2$)-variate integrals can now be evaluated simply by using bivariate normal probabilities. We also remark that block covariance matrices occur commonly in multivariate data analysis, for instance in pooling of cross-sectional and time series data in econometric studies.

The work was supported by the U.S. Army Research Office and the Office of Naval Research.

References

Cacoullas, T. \& Sobel, M. (1966). An inverse sampling procedure for selecting the most probable event in a multinomial distribution. In Multivariate Analysis, Ed. P. R. Krishnaiah, pp. 423-55. New York: Academic Press.
Das, S. C. (1956). The numerical evaluation of a class of integrals, II. Proc. Camb. Phil. Soc. 52, 442-8.
Dunnett, C. W. (1960). On selecting the largest of k normal population means. J. R. Statist. Soc. B 22, 1-40.
Dunnett, C. W. \& Sobel, M. (1955). Approximations to the probability integral and certain percentage points of a multivariate analogue of Student's t-distribution. Biometrika 42, 258-60.
Dutr, J. E. (1973). A representation of multivariate normal probability integrals by integral transforms. Biometrika 60, 637-45.
Fatrweather, W. R. (1966). Some extensions of Somerville's procedure for ranking means of normal populations. Biometrika 55, 411-8.
Steck, G. P. \& Owen, D. B. (1962). A note on the equicorrelated multivariate normal distribution. Biometrika 49, 269-71.
Webster, J. T. (1970). On the application of the method of Das in evaluating a multivariate normal integral. Biometrika 57, 657-60.

